Exploring the role of spatial attention in movement simulation

Themis Efthimiou, Jonathan Silas, Wayne Anderson \& Alexander Jones Middlesex University London
www.jones-silas-lab.com

Background

Previous research has used EEG 'mu' frequency ($\sim 8-13 \mathrm{~Hz}$) changes to infer the recruitment of sensorimotor activation during biological movement observation.

- This sensorimotor activation is thought to be an indication of online movement simulation. It has been demonstrated that top-down attentional processes modulate the engagement of sensorimotor simulation during movement observation (Siqi-Liu et al., 2018)

What remains unknown is whether biological motion exogenously captures spatial attention and, in turn, modulates sensorimotor simulation.

Experiment

Participants completed a dot-probe paradigm while EEG data were recorded from 64 electrodes.

- Cues were point-light displays (PLDs) of human figures walking (left or right) from a sagittal view and scrambled versions of the same PLDs (taken from Troje \& Westhoff, 2006). Both PLDs were presented laterally for each trial for 2000 ms

Masked static PLDs images served as a pre-cue baselines for each trial displayed for 1000 ms . Participants were instructed to ignore static images and cues, only to respond to identify a subsequent target (either ' N ' or ' M ') that replaced either the PLD or the scrambled PLD.

For the behavioural analysis a total 56 participants were included; 22 males and 34 females, mean age 22.7 ($S D=3.83$). For EEG analysis a total of 45 participants were; 18 males and 27 females, mean age $22.6(S D=3.74)$

Behavioural Findings

Main effect for cue location, ($F=4.474, p=.039$). RTs were faster for responses to targets replacing either cue in the left visual space compared to targets replacing the cue in the right visual field.

Interaction effect between the location of the coherent PLD and the location of the target, ($F=24,925, p=.001$). Post-hoc comparisons were conducted by means of pairwise-sample t-tests (Bonferroni adjusted $\alpha=.008$):

- RTs were always faster to targets that replaced the scrambled PLD, whether the cue appeared in the left $(t=1.71, p=.008)$ or right $(t=2.284, p=.001)$ visual field.
- Further, when the coherent PLD occupied the left visual space responses to targets were faster ($t=2.92, p=.005$) when replacing the scramble PLD, compared with the coherent PLD.

Left
Right
Target Location

EEG Findings
EEG data were analysed using complex demodulation to define power modulations.
Analysis was conducted on two central electrodes C3 and C4 and two occipital electrodes O1 and O2.

- Central 350-900 ms - Analysis revealed hemispheric differences ($F=5.199, p=.028$). With greater decrease in the left hemisphere compared to the right hemisphere.
- Main effect for cPLD location ($F=8.50, p=.006$). There was a greater decrease when the coherent PLD appeared in the participants right compared to when the coherent PLD appeared in the left visual field.
- Interaction between topographical site and hemisphere, ($F=9.762, p=.003$). For central sites only ($\alpha=.008$),), revealed a greater decrease in the left hemisphere compared to the electrode on the right hemisphere ($t=3924, p=.001$).

Central 1150-2000 ms - Main effect for hemisphere ($F=24.945, p=.001$). There was a greater decrease in the left hemisphere compared to the right hemisphere

- The second main effect was for the PLD walk direction ($F=4.961, p=.006$). There was a greater decrease in amplitude when the PLDs walked towards the right compared to when they walked towards the left.

Interaction between topographical site and hemisphere, ($F=7.832, p=.008$). For central sites only, paired sample t-tests $(\alpha=.008)(t=5.072, p=.001)$, revealed a greater decrease in the left hemisphere compared to the electrode on the right hemisphere.

Conclusion

An attention bias to scramble PLDs was demonstrated. This may be an inhibition of return (IOR) effect or that ambiguous motion selectively attended.

- Onset of desynchronisation begun earlier and lasted for a longer period at occipital electrodes compared to central electrodes

Occipital alpha suppression was more robust than mu suppression suggesting the involvement of a strong attentional component.

- Lateralised mu and bilateral alpha desynchronisation were shown. Greater desynchronisation of mu was found in the left hemisphere.

[^0]biology, 16(8), 821-824.

[^0]: References
 Hobson, H. M., \& Bishop, D. V. (2016). Mu suppression-a good measure of the human mirror neuron system?. cortex, 82, 290-310, Hobson, H. M., \& Bishop, D. V. (2016). Mu suppression-a good measure of the human mirror neuron system?. cortex, 82, 290-310.
 Koelewiin, T., van Schie, H. T., Bekkering, H., Oostenveld, R., \& Jensen, O. (2008). Motor-cortical beta oscillations are modulated by Koelewinn, T., van Schie, H. T., Bekkering, H., Oostenveld,
 correctness of observed action. Neuroimage, $40(2), 767-775$.
 Siqi-Liu, Audrey, et al. "Dissociable processing of emotional and neutral body movements revealed by μ-alpha and beta rhythms." Social cognitive and affective neuroscience 13.12 (2018): 1269-1279.
 .
 in biological motion perception: Evidence for a "life detector"? Current

